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SUMMARY 
A new technique for the numerical simulation of the free surface flows is developed. This technique is based 
on the finite element method with penalty formulation, and a flux method for surface advection. The 
advection part which is completely independent of the momentum solver is based on subdividing the fluid 
domain into small subvolumes along one of the co-ordinate axis. The subvolumes are then used to find the 
height function which will later describe the free surface. The free surface of the fluid in each subvolume is 
approximated by a line segment and its slope is calculated using the volume of the fluid in the two 
neighbouring subvolumes. Later, the unidirectional volume flux from one subvolume to its neighbouring 
one is calculated using the conservation laws, and the new surface line segments are reconstructed. This 
technique, referred to as the Height-Flux Method (HFM) is implemented to simulate the temporal 
instability of a capillary jet. The results of the numerical simulation well predict the experimental data. It is 
also shown that the HFM is computationally more efficient than the techniques which use a kinematic 
boundary condition for the surface advection. 
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1.  INTRODUCTION 

In the numerical simulation of viscous fluid flows with free surfaces and interfaces, a technique 
has to be devised to track the motion of these surfaces. Depending on the complexity of the 
surface/interface topology, different techniques are preferred. For very complicated surface 
motion with surface merging and surface breaking, Marker And Cell (MAC) and Volume Of 
Fluid (VOF) methods are normally used.' -' Finite element methods are preferred in problems 
with less complicated surface def0rrnati0n.s.~- l2 The conventional Galerkin method on a fixed 
mesh and purely Lagrangian approach where nodes are fluid particles are common techniques to 
track the surface in such cases. 

The Lagrangian method seems natural in tracking the free surface or  the interface. However, it 
may result in overdistorted grids, and therefore may require somewhat intricate remeshing 
procedures. In this technique the unknown fields are interpolated by finite element basis functions 
defined on a continuously deforming grid. The displacement of the free surface is unknown 
a priori and is determined simultaneously with the unknown fields. Then, at  each discrete time 
step, the grid is deformed to follow the motion of the free surface in a way that avoids excessive 
element deformations and the unknown field is calculated again. 

l4 which is a particular case of the 
method of spines by Kistler and Scriven." In a two-dimensional problem, the free surface is 

Another more common technique is the height 
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represented by a function of time and a single space co-ordinate, i.e. height function. The 
evolution of the free surface is then determined by the kinematic condition for the surface. Here, 
the motion of the internal nodes is related to the displacement of the free surface or interface. 

In this paper a new technique for tracking of the free surfaces, which utilizes the conservation of 
mass rather than the kinematic condition, is presented. In Section 2 the generalized governing 
equations for the simulation of the free surface flows are given, followed by their finite element 
formulation in Section 3. The surface advection technique is described in Section 4 and it is 
applied to the capillary jet instability problem in Section 5. The concluding remarks are given in 
Section 6. 

2. GOVERNING EQUATIONS 

Consider the laminar flow of an incompressible and viscous fluid with a free surface. Assuming 
constant properties for the fluid, the governing equations of the flow in non-dimensional form are 

where j? = 0 for 2D Cartesian and j? = 1 for axisymmetric flows. The non-dimensional parameters 
have been defined as 

z‘ r‘ t‘U z = -  r = -  
L’ L’ t=- L ’  

pUZ’ u’ u=e, Ut V I  p = -  P’ u=- 

PUL p U 2 L  R e = - - - ,  We=-, 
CL 0 

with L and U being the characteristic scales of length and velocity, respectively. The density, 
viscosity, and surface tension of the fluid are represented by p ,  p and 0. 

The boundary conditions are given by 

u = F ( z ,  r )  
v = G(z, r )  on Sl, 

where S1 and S2 are parts of the boundary with Dirichlet and Neumann boundary conditions, 
respectively. ?,, and frr denote z and r components of the total surface traction and n, and n, 
denote direction cosines of the unit outer normal to the surface Sz. On the free surface, f,, and f,, 
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Figure 1. An axisymmetric fluid domain represented by a height function 

are the components of the surface tension which are inversely proportional to the radius of 
curvature of the surface R: .  Therefore, 

- o/R: 1 1 
zzz=pu2 nz=- - we R,  "9 

The non-dimensionalised radius of curvature of an axisymmetric surface is 

1 1 1  +--, _-_ 
R,-RI R2 

with R1 and R2* being the principal radii of curvature of the surface. We assume that the free 
surface can be represented by a height function h(z, t ) ,  which is independent of the radius r,  as 
shown in Figure 1. Therefore, R1 and Rz are given by 

In the problems considered in this paper there is no contact between the free surface and solid 
walls; therefore, the contact angles are not modelled here. 

3. FINITE ELEMENT FORMULATION 

We use the Galerkin finite element method to solve equations (1H3). In accordance with the 
advection method described in Section 4, the solution should be in terms of the primitive 
variables and, due to the significance of the surface tension effects in free surface flows, it has to be 
capable of handling the pressure, velocity, velocity gradient and stress boundary conditions 
directly. There are two different FEM models commonly in use now.16 The first one is the mixed 
method which uses the velocity components and pressure as the dependent variables through 
a Bubnov-Galerkin formulation. The second one which is used in this paper is the penalty 

* For a two-dimensional surface R,=co. 
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function formulation with the principal advantage that the pressure is eliminated from the set of 
unknown variables by absorbing the continuity equation into the momentum equation." 
Therefore, the pressure is defined as 

where I is a large number depending on ,u and Re. Substituting for the pressure from equation (7) 
into the momentum equations (2) and (3), and applying the Galerkin method, the following 
matrix equations are obtained: 

where 

where Ni's are the shape functions for the isoparametric quadrilateral elements in the domain 
R with the boundary r. Integrals (9H12) and (16) are evaluated by the 2 x 2 Gauss-Legendre 
integration rule. The [L] matrices should be singular for the penalty function approach to be 
successful. A reduced Gauss integration is used to evaluate the [L] matrices given by integrals 
(13H15). The surface traction resulting from the surface tension effects is directly integrable over 
the free surface using equation (16). 
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The above formulation is based on the Eulerian or fixed mesh that the location of the nodes 
does not change with time. In this paper we are going to follow the displacement of the free 
surface in a Lagrangian sense, which results in the motion of the nodes throughout the mesh. 
From a physical point of view, this motion of nodes will impose some convective effects on the 
flow variables. We allow the motion of the nodes in the r direction only according to the following 
simple rule: 

zi(t+6t)=zi(t)=constant, r i ( t+d t )=cr i ( t ) ,  (17) 
where the subscript i refers to the node number, and c=c(z ,  t )  is a constant for each column of 
nodes defined as 

In order to show how this motion affects the convective terms in equations (2) and (3), let us 
consider the axial velocity u at node i. Denote the time rate of change of this velocity, as appears 
in equation (2), with au/at l z , r .  Then for the total change of u in the moving frame of reference, we 
can write 

where the subscript i refers to the derivative in the moving frame of reference. Noting from (17) 
that (dz/dt)i=O, and approximating (drldt), with a backward finite difference in terms of c, we 
obtain 

Now, recognizing that au/a t ( , , ,  is the same as au/at of equation (2), and dropping the subscripts, 
we can rewrite equation (2), in the moving co-ordinate, as 

With a similar argument for the radial momentum equation one can show that 

These new extra terms will modify the matrix [CZZ] of the finite element formulation (equation 
(10)) as 

where 

c-1 
dt 

8" = v,-- Ti. 

There is an alternative procedure to obtain the above formulation as adopted by Albert and 
O'Neill'' and Ke~n ings . '~  These authors have considered the shape function as a function of 
time as well as space. By applying the Galerkin method directly on this shape function, they find 
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the same result as the one shown in (23) and (24). However, we would rather use the procedure 
explained by (19H21) because it is more physically comprehensive. 

4. SURFACE ADVECTION 

Once the velocities are obtained, the interface has to be advected. In this paper we present a new 
method for surface advection entitled the Height-Flux Method, abbreviated as HFM. Indeed, 
HFM is a combination of the height method, which is used with the finite element method, and 
the flux methods extensively used for surface advection in the finite difference method. The flux 
method was originally developed by Ashgriz and Poo6 for 2D Cartesian flows. This method was 
entitled FLAIR, standing for Flux Line-segment model for Advection and Interface Reconstruc- 
tion. The FLAIR technique was also implemented for the surface advection based on the 
velocities obtained from a finite elements so l~ t ion . '~  This technique is referred to as FEM-VOF 
and is applicable to very large surface deformations including merging and breaking of liquid 
regions. However, for the problems that the free surface can be represented by a height function, 
a much simpler version of the FEM-VOF method can be developed, which is described below. 

Consider the domain (2D Cartesian or 3D axisymmetric) shown in Figure 2 which is sur- 
rounded by a free surface (shown with the thicker line) at the top. We divide this domain into 
several vertical subvolumes of width 6zI and volume V,. The location of the free surface on the left 
and right sides of this subvolume is given by hi and h i + l  at time t ,  respectively. Knowing the 
velocity distributions over the sideplanes, we are going to find the location of the free surface, i.e. 
hi and h i + l ,  at time t + S t .  In order to do this, we first calculate the net flux of the fluid passing 
through the sideplanes during the time interval St, and determine the new volume of fluid at the 
time t + 6t in the subvolume by adding the net flux to the previous volume at time t. Then we solve 
the inverse problem to find the new heights, hi.  In the remainder of this section we explain the 
HFM method for axisymmetric flows; the extension to 2D Cartesian is straightforward. 

Figure 2 shows a typical element in the axisymmetric r-z plane along with its isoparametric 
master element in the t-q plane. Since the sideplanes are normal to the axial direction, in flux 
calculation we need to consider the axial velocity, u, only. Let us consider the side 2-3 of the 
element e lying on the right sideplane. The flux passing through this side is 

Figure 2. The fluid zone divided into subvolumes represented by their height and thickness (a), and mapping of the 
Eulerian element, e, into the master isoparametric element (b) 



A HEIGHT-FLUX METHOD 1041 

Assuming constant velocity during the time interval at, we can take bt out of the integral. In the 
finite element solution, the velocity and radius are approximated by 

u=uiNi and r=riNi, (26) 

ui being the velocity at node i and Ni being the shape function for the isoparametric quadrilateral 
elements, defined as follows: 

N l K  49=4(t-l)(v-l), 

N2(<> = -t(< + 1)(v - 11, 
N3(t9fl)=a(r+1>(fl+1>, 

N4(& ?) = - t (t: - 1Nv + 1). 

(27) 

Then 

6V:=6tJrz3 2mrdr=2x& 

The side 2-3 of the cell is mapped onto the side 2-3 of the master element where r = 1 and d5=0. 
Therefore, 

1 

bVi=2n6t (u2N2+u3N3)(r2NZ+r3N3) 

After substituting for N2, N 3  and their derivatives we find that 

71 St 
3 sv:=- (r3 - r2)(2r,uS + r2u3 + r3u2 + 2r2u2). 

The total flux, 6VR, passing through the right sideplane is the summation of SVt; for all elements 
in the subvolume. The flux of fluid passing through the left sideplane, 6 VL, can be calculated in 
a similar way. Then the new volume of fluid in the subvolume I is 

Vr (t + d t )  = Vr ( t  ) + 6 VL - 6 V R  . (29) 
To complete the advection process we need to solve the inverse problem of finding the new 

heights from the new subvolumes. In order to find the height of the interface at the sideplane 
between every two adjacent subvolumes, V, and Vb, we assume that the part of the interface 
which is located in these subvolumes can be approximated by a line segment with the equation 

h=al;+b, (30) 
where a and b are two constants yet to be determined. By examining the two adjacent sub- 
volumes, two possibilities for the orientation of the interface line segment, as shown in Figure 3, 
are realized. First, consider case 1, in which the line segment does not intersect the z axis. Figure 
3(a) shows this case with local co-ordinates ( and h. Knowing the volumes V, and Vb, the 
constants a and b of equation (30) are calculated as follows. The fluid volumes in subvolumes 
a and b are 

d a  V,,=T [b2+b(a(,+b)+(aC-a+b)2], 
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(a)  (b) 

Figure 3. Two different possible cases for free surface representation showing the intersection points of the interface with 
the subvolume sides 

Rearranging, 

The above set of two non-linear equations (equation (31)) for a and b is solved numerically using 
the Newton-Raphson method. Once a and b are found, the height of the common side of the two 
subvolumes is determined from 

h = aCa + 6. (32) 
The analogous set of non-linear equations for case 2, shown in Figure 3(b), is 

For any given pair of V,, and V,, equations (31) are solved first to find a and b, and consequently 
the heights are obtained at the sideplanes using equation (30). If all the calculated heights are 
positive, then this pair of subvolumes is case 1, otherwise equations (33), which belong to case 2, 
are used to calculate the heights. 

The accuracy of this surface reconstruction technique is discussed by reconstructing a known 
surface. First, the volume underneath the known surface is divided into equally spaced sub- 
volumes and the volume enclosed inside each subvolume is calculated. Then, knowing the 
subvolumes, the surface is reconstructed, and is compared with the known surface. We have 
considered the axisymmetric surfaces which intersect the r-z plane by the family of curves given as 

(34) 
This curve is shown by a solid line in Figure 4 for ro = 1. The filled circles indicate the location of 
the surface found by implementing the HFM reconstruction scheme. N refers to the number of 

r = ro + (ro - 0.03) cos 2nz. 
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Figure 4. Comparison of the HFM results with the exact solution for a cosine function 
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subvolumes used for the surface reconstruction. In Figures 4(aw(d) we have compared the 
reconstructed surface with the exact surface for N = 10,20,40 and 80. As expected, the reconstruc- 
tion error depends on the curvature of the surface in the r-z plane (i.e. R1 given in Section 2). 
Wherever the curvature goes to zero, the error approaches zero as well, because the reconstruc- 
tion technique is based on the linear approximation of the interface. Therefore, by increasing the 
number of subvolumes, we are, in fact, improving the reconstructed surface in the regions of 
higher curvature. Figure 4(c) indicates that with N = 40 we can have very good approximation for 
the surface. Using 80 subvolumes, almost exact reconstruction of the surface is obtained, as seen 
in Figure 4(d). 
By inspecting Figures 4(a)-4(d) it is concluded that the maximum reconstruction error always 

happens at the minimum point of the curve, i.e. z=O*5. Figure 5 gives the number of divisions 
(subvolumes) required to keep the error at z = 0-5 less than 0005, as a function of the curvature at 
this point. The curvature has been varied by changing ro in equation (34), while the other 
parameters were kept constant. The number of divisions has to be an even integer; therefore, the 
curvature is not varied continuously and the curve shown in Figure 5 is not smooth. Figure 
5 shows that the higher the curvature, the more divisions are needed to keep the error less than 
some particular value (0-005 in this case). 

Variation of the reconstruction error at z =0.5, as a function of curvature for N = 40 is shown in 
Figure 6. Increasing the curvature enhances the error almost linearly. Knowing the variation of 
the curvature along a particular surface, Figure 6 gives an estimation of the expected error at 
different points of the surface. For instance, consider the free surface shown in Figure 7. (This is 
the half-wavelength of an infinitely long water jet which is discussed in Section 5). In Figure 8 the 
curvature at different points of this surface is given for N=40. The absolute value of maximum 
curvature of this surface is seen to be less than 2.5. Therefore, from Figure 6 the maximum 
reconstruction error is approximated to be less than 0.0005. 

To summarize the sequence of operations involved in HFM, consider Figure 9. Due to the 
symmetry, only the half-wavelength of the jet is considered. The initial fluid domain is seen in 

- 

- 

- 

I I I 

8 0 ' .  . . ! . . . ! , , , ! , . , 1 

t -I 

c 

Figure 5. Number of divisions, N, needed to keep the calculated error of curvature at z=O5 of Figure 4 to less than 0.005 
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2.63--- 

r 1.75- 

Figure 9(a), where the free surface is indicated at the top by the thicker line. The domain is 
discretized by ten subvolumes, with the amount of fluid in each subvolume as shown in Figure 
9(b). Then, this set of numbers is transformed to the free surface, implementing the method 
described in this section. The finite element mesh generated based on this free surface is depicted 
in Figure 9(c). When the flow equations are solved, the velocity field is found as shown by the 
velocity vectors in Figure 9(d). The new subvolumes are obtained using equation (29). The 
numbers corresponding to these new subvolumes are shown in Figure 9(e). In the final step, the 
new free surface is reconstructed based on these numbers, and the new finite element mesh is 
generated as depicted in Figure 9(f). This completes the sequence of the operations needed in the 
first time step. In continuation, the steps shown in Figures 9(d)-9(f) are repeated. 

- 

0 20.0 40.0 60.0 80.0 
curvoture 

Figure 6. The calculated error for the curvature at z=O.5 of Figure 4 for N =40 



1046 F. MASHAYEK AND N. ASHGRIZ 

0 2.63 5.25 7.8% 10.5 
jet axis 

Figure 8. Curvature at various locations of the surface presented in Figure 7 

r- 

Figure 9. Illustration of the steps taken in HFM: (a) definition of the initial surface shape; (b) subdivision of the domain 
into subvolumes and description of the subvolume quantity; (c) mesh generation; (d) calculation of the velocity field; 
(e) advection of the liquid and calculation of the new subvolume quantities; (f)  reconstruction of the new surface and 

mesh system 
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5. TEMPORAL INSTABILITY OF LIQUID JETS 

The HFM is implemented to simulate the breakup of capillary jets. This problem is chosen to test 
HFM since numerous experimental, analytical and numerical information is available to com- 
pare our results with, The linear solution for the instability of inviscid jets is given by Rayleigh” 
and of viscous jets by Chandrasekhar.” The linear analysis could not predict the experimentally 
observed satellite drops. Non-linear instability of inviscid capillary jets has been studied by 
several investigators, such as Yuen;” however, the non-linear instability of viscous jets has not 
been the subject of analytical investigations. The experimental and numerical studies cover 
a broader range and are reported by a large number of researchers such as Goedde and Y ~ e n ~ ~  
and Vassallo and A s h g r i ~ , ~ ~  and numerically by Bousfield et al l4  and Mansour and L~ndgren.’~ 

We have considered the breakup of infinitely long jets in vacuum, subject to an initially 
periodic surface disturbance of the form 

r(z) = 1 + qo cos(kz), 

where qo and k are the amplitude and the wave number, respectively. It is assumed that the jet 
velocity is much larger than the characteristic capillary speed and a temporal study is appropri- 
ate. Therefore, only one wavelength of the jet is considered and symmetric boundary conditions 
are applied. The undisturbed radius of the jet is selected as the length scale, and the time scale is 
obtained by equating the Weber number to some constant. 

First, we will consider the breakup of a water jet with Re=331*2, k=0-3 and the initial 
amplitude qo =0.001. This problem has been studied by Mansour and Lundgren” using a highly 
accurate boundary integral method, assuming inviscid fluid. We put We=2 for this problem in 
order to obtain the same velocity scale as the one employed by Mansour and L~ndgren . ’~  We 

time= 0.0 

4 8 . 2 6 0  

50.388 

Figure 10. Evolution of the FEM mesh system for the liquid jet instability 
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have solved this problem with a relatively coarse m e s h 4  x 4 linear quadrilateral elements. The 
initial finite element mesh at time t = O  along with the deformed mesh at three other times, 
including the breakup time t b  = 50.834, are seen in Figure 10. Due to the effects of the surface 
tension, fluid is pushed from the region with smaller radius towards the higher-radius regions of 
the jet and the location of the point with minimum radius will change. Eventually, the jet breaks 
into main and satellite drops. The breakup time is in excellent agreement with the breakup time 
obtained by Mansour and L ~ n d g r e n , ~ ~  i.e. tb = 50.9. 

The growth rate of the interface disturbances is calculated following the procedure described by 
Donnelly and Glaberson.26 The exponential growth rate, o, is defined by q=qOemf. Then 

Therefore, o is the slope of the curve ln(q/q,) versus time when the curve is approximated by 
a line. Figure 11 shows the variation of the logarithmic amplitude versus time for swell, neck, and 
the difference between them. Note that the swell and neck are defined as the locations on the jet 
axis corresponding to the maximum and minimum jet radius at the initial time, respectively, and 
their positions are fixed in time. The exponential growth rate is not a constant at different points 
of the jet surface. However, as suggested by Yuen?' and also observed in Figure 11, the 
exponential growth rate of the difference between swell and neck may be considered constant up 
to a high degree of accuracy. The growth rate obtained by this method is o=O.195, which 
compares very well with the analytical result of Chandrasekhar," 0=0.200, for the same jet. It is 
also in good agreement with the experimental results of Goedde and Y ~ e n . ~ ~  

Time 

Figure 11. Variation of the amplitude of the swell, neck and the difference between them as a function of time for a jet 
with Re=331.2, We=2 and k=0.3001 with qe=O.OO1 
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We have compared the HFM and the original height method where the evolution of the free 
surface is calculated by the kinematic condition for the surface: 

ah ah - at + u s  - = us, ax 
where us and us are the velocity components at the free surface and h is the height function. The 
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same number of linear quadrilateral elements (160) and the same time step are used in both 
calculations. Also, the initial disturbance is the same in both cases. Figure 12 shows large 
differences between the results of the two techniques for a jet with Re = 10, We = 1, k = 0.4488 and 
qo=O-05. The height method cannot follow the actual surface motion at this grid resolution. Only 
after the grid resolution is increased and the time step reduced, the height method produces 
accurate results, as shown by Ke~nings . '~  Therefore, the HFM is a more efficient technique for 
the study of free surface flows where extensive parametric studies are needed. 

A detailed investigation of the breakup of a water jet (Re=200, We= 1 and q0=O-05) for 
various disturbance wave numbers is completed. Figure 13 shows the influence of the wave 
number on the sizes of the main and satellite drops. The increase in the wave number is shown to 
result in the formation of shorter and thinner liquid ligaments, and consequently smaller satellite 
drops. The theoretically predicted values are compared with the experimentally measured drop 
sizes obtained by Lafrance2' and Rutland and Jameson.'' The calculated results are in excellent 
agreement with the experimental data. 

0 0.2 0.4 0.6 0.8 1 .o 
k 

Figure 13. Predicted (solid line) and measured (symbols) values of the main and satellite drop sizes for a water jet 
(Re =200, We = 1 and qo =0.05) at various disturbance wave numbers 
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The effect of Re on the growth rate of the disturbances and the sizes of the drops is also 
considered. Figure 14 shows the breakup of a capillary jet with Re= 10, We= 1, a disturbance 
wave number k =0.4488 and amplitude qo =005. The same number of elements as in the previous 
problem has been used, i.e. 160 linear quadrilateral elements. The breakup time for the low-re jet 
of Figure 14 has increased to tb = 14.269. Also, comparison with Figure 10 reveals that lowering 
the Re will result in thinner ligament and larger main drops. Figure 15 depicts the variation of 
logarithmic amplitude with time for this jet. These results clearly show the deviation of the growth 
rate from the linear theory. 

The effect of the wave number on the low-Re jet is considered next. Figure 16 shows the history 
of the surface deformation for a jet with Re = 10, We = 1, k = 0.6283 and qo = 0.05, with a finite 
element mesh consisting of 80 linear elements. Again, the results show a reduction in the satellite 
size with an increase in the wave number. The variation of logarithmic amplitude of the swell, 
neck, and the difference between them with time are presented in Figure 17. Comparing Figure 17 
with Figure 15 shows that at lower wavelengths the growth rates behave more linearly. It can be 
clearly seen that the logarithmic amplitude curves of Figure 17 stay parallel to each other and 
almost linear for most of the time before the breakup. To verify the accuracy of the results, we 
have repeated the problem using a refined mesh with 160 elements. Table I compares the results at 
the breakup time and indicates that they are in very good agreement. All the parameters used for 
this jet are the same as those shown in Figure 14, except for the wave number, which is increased 
by 40%. 

Figure 14. The time-resolved simulation of the breakup of a liquid jet: Re= 10, We=l and disturbance wave number 
k=0-4488 with qo=@05 
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Figure 15. Variation of the amplitude of the swell, neck and the difference between them as a function of time for a jet 
with Re=lO,  We=l  and k=04488 with q0=0.05 

Figure 16. The time-resolved simulation of the breakup of a liquid jet: Re= 10, We= 1 and disturbance wave number 
k=0.6283 with qo=0.05 
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6. CONCLUSION AND COMMENTS 

A new method is developed for the study of free surface flows using the finite element method with 
penalty formulation, and a flux method for surface advection. The advection part is completely 
independent of the momentum solver; however, it can easily be combined with any finite element 
code. The accuracy and efficiency of this technique is shown through the study of capillary 
breakup of liquid jets. The results indicate that the satellite drop size reduces with increasing wave 
number. The theoretically calculated main and satellite drop sizes were in excellent agreement 
with the experimentally measured values. Numerical experiments indicate the ability of the 
method in handling large surface deformations and its accuracy using a coarse mesh and large 
time steps. Therefore, this method can be implemented to perform extensive studies of free surface 
flows. Further extension of this technique is possible to include the energy equation. The spatial 
study of the instability of jets is also freasible through the improvement of the method to allow 
generation of new subvolumes. 
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